43 research outputs found

    Building communities for the exchange of learning objects: theoretical foundations and requirements

    Get PDF
    In order to reduce overall costs of developing high-quality digital courses (including both the content, and the learning and teaching activities), the exchange of learning objects has been recognized as a promising solution. This article makes an inventory of the issues involved in the exchange of learning objects within a community. It explores some basic theories, models and specifications and provides a theoretical framework containing the functional and non-functional requirements to establish an exchange system in the educational field. Three levels of requirements are discussed. First, the non-functional requirements that deal with the technical conditions to make learning objects interoperable. Second, some basic use cases (activities) are identified that must be facilitated to enable the technical exchange of learning objects, e.g. searching and adapting the objects. Third, some basic use cases are identified that are required to establish the exchange of learning objects in a community, e.g. policy management, information and training. The implications of this framework are then discussed, including recommendations concerning the identification of reward systems, role changes and evaluation instruments

    Finding your way into an open online learning community

    Get PDF
    Making educational materials freely available on the web is not only a noble enterprise, but also fits the call of helping people to become lifelong learners; a call which gets louder and louder every day. The world is rapidly changing, requiring us to continuously update our knowledge and skills. A problem with this approach to lifelong learning is that the materials that are made available are often both incomplete and unsuitable for independent learning in an online setting. The OpenER (Open Educational Resources) project at the Open Universiteit Nederland makes more than 20 short courses, originally developed for independent-study, freely available from the website www.opener.ou.nl. For our research we start from an envisioned online learning environment now under development. We use backcasting to select research topics that form steps from the current to the ultimate situation. The two experiments we report on here are an extension to standard forum software and the use of student notes to annotate learning materials: two small steps towards our ultimate open learning environment

    Cooling of Cells and Organs Confers Extensive DNA Strand Breaks Through Oxidative Stress and ATP Depletion

    Get PDF
    Cooling at 4 degrees C is routinely used to lower metabolism and preserve cell and tissue integrity in laboratory and clinical settings, including organ transplantation. However, cooling and rewarming produce cell damage, attributed primarily to a burst of reactive oxygen species (ROS) upon rewarming. While DNA represents a highly vulnerable target of ROS, it is unknown whether cooling and/or rewarming produces DNA damage. Here, we show that cooling alone suffices to produce extensive DNA damage in cultured primary cells and cell lines, including double-strand breaks (DSBs), as shown by comet assay and pulsed-field gel electrophoresis. Cooling-induced DSB formation is time- and temperature-dependent and coincides with an excess production of ROS, rather than a decrease in ATP levels. Immunohistochemistry confirmed that DNA damage activates the DNA damage response marked by the formation of nuclear foci of proteins involved in DSB repair, gamma-H2Ax, and 53BP1. Subsequent rewarming for 24 h fails to recover ATP levels and only marginally lowers DSB amounts and nuclear foci. Precluding ROS formation by dopamine and the hydroxychromanol, Sul-121, dose-dependently reduces DSBs. Finally, a standard clinical kidney transplant procedure, using cold static storage in UW preservation solution up to 24 h in porcine kidney, lowered ATP, increased ROS, and produced increasing amounts of DSBs with recruitment of 53BP1. Given that DNA repair is erroneous by nature, cooling-inflicted DNA damage may affect cell survival, proliferation, and genomic stability, significantly impacting cellular and organ function, with relevance in stem cell and transplantation procedures

    Genome-wide association studies of Shigella spp. and Enteroinvasive Escherichia coli isolates demonstrate an absence of genetic markers for prediction of disease severity

    Get PDF
    BACKGROUND: We investigated the association of symptoms and disease severity of shigellosis patients with genetic determinants of infecting Shigella and entero-invasive Escherichia coli (EIEC), because determinants that predict disease outcome per individual patient could be used to prioritize control measures. For this purpose, genome wide association studies (GWAS) were performed using presence or absence of single genes, combinations of genes, and k-mers. All genetic variants were derived from draft genome sequences of isolates from a multicenter cross-sectional study conducted in the Netherlands during 2016 and 2017. Clinical data of patients consisting of binary/dichotomous representation of symptoms and their calculated severity scores were also available from this study. To verify the suitability of the methods used, the genetic differences between the genera Shigella and Escherichia were used as control. RESULTS: The isolates obtained were representative of the population structure encountered in other Western European countries. No association was found between single genes or combinations of genes and separate symptoms or disease severity scores. Our benchmark characteristic, genus, resulted in eight associated genes and > 3,000,000 k-mers, indicating adequate performance of the algorithms used. CONCLUSIONS: To conclude, using several microbial GWAS methods, genetic variants in Shigella spp. and EIEC that can predict specific symptoms or a more severe course of disease were not identified, suggesting that disease severity of shigellosis is dependent on other factors than the genetic variation of the infecting bacteria. Specific genes or gene fragments of isolates from patients are unsuitable to predict outcomes and cannot be used for development, prioritization and optimization of guidelines for control measures of shigellosis or infections with EIEC

    Prenatal arachidonic acid exposure and selected immune-related variables in childhood

    Get PDF
    Arachidonic acid (AA) is considered essential in fetal development and some of its metabolites are thought to be important mediators of the immune responses. Therefore, we studied whether prenatal exposure to AA is associated with some immune-related clinical conditions and plasma markers in childhood. In 280 children aged 7 years, atopy, lung function and plasma inflammation markers were measured and their relationships with early AA exposure were studied by linear and logistic regression analyses. AA exposure was deduced from AA concentrations in plasma phospholipids of the mothers collected at several time points during pregnancy and at delivery, and in umbilical cord plasma and arterial and venous wall phospholipids. In unadjusted regression analyses, significant positive associations were observed between maternal AA concentrations at 16 and 32 weeks of pregnancy (proxies for fetal AA exposure) and peak expiratory flow decline after maximal physical exercise and plasma fibrinogen concentrations of their children, respectively. However, after correction for relevant covariables, only trends remained. A significant negative relationship was observed between AA concentrations in cord plasma (reflecting prenatal AA exposure) and the average daily amplitude of peak expiratory flow at rest, which lost significance after appropriate adjustment. Because of these few, weak and inconsistent relationships, a major impact of early-life exposure to AA on atopy, lung function and selected plasma inflammation markers of children at 7 years of age seems unlikely

    A Multifactorial Approach for Surveillance of Shigella spp. and Entero-Invasive Escherichia coli Is Important for Detecting (Inter)national Clusters

    Get PDF
    Shigella spp. and entero-invasive Escherichia coli (EIEC) can cause mild diarrhea to dysentery. In Netherlands, although shigellosis is a notifiable disease, there is no laboratory surveillance for Shigella spp. and EIEC in place. Consequently, the population structure for circulating Shigella spp. and EIEC isolates is not known. This study describes the phenotypic and serological characteristics, the phenotypic and genetic antimicrobial resistance (AMR) profiles, the virulence gene profiles, the classic multi-locus sequence types (MLST) and core genome (cg)MLST types, and the epidemiology of 414 Shigella spp. and EIEC isolates collected during a cross-sectional study in Netherlands in 2016 and 2017. S. sonnei (56%), S. flexneri (25%), and EIEC (15%) were detected predominantly in Netherlands, of which the EIEC isolates were most diverse according to their phenotypical profile, O-types, MLST types, and cgMLST clades. Virulence gene profiling showed that none of the isolates harbored Shiga toxin genes. Most S. flexneri and EIEC isolates possessed nearly all virulence genes examined, while these genes were only detected in approximately half of the S. sonnei isolates, probably due to loss of the large invasion plasmid upon subculturing. Phenotypical resistance correlated well with the resistant genotype, except for the genes involved in resistance to aminoglycosides. A substantial part of the characterized isolates was resistant to antimicrobials advised for treatment, i.e., 73% was phenotypically resistant to co-trimoxazole and 19% to ciprofloxacin. AMR was particularly observed in isolates from male patients who had sex with men (MSM) or from patients that had traveled to Asia. Furthermore, isolates related to international clusters were also circulating in Netherlands. Travel-related isolates formed clusters with isolates from patients without travel history, indicating their emergence into the Dutch population. In conclusion, laboratory surveillance using whole genome sequencing as high-resolution typing technique and for genetic characterization of isolates complements the current epidemiological surveillance, as the latter is not sufficient to detect all (inter)national clusters, emphasizing the importance of multifactorial public health approaches

    Immunological profiling in long COVID:overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity

    Get PDF
    Background: Many patients with SARS-CoV-2 infection develop long COVID with fatigue as one of the most disabling symptoms. We performed clinical and immune profiling of fatigued and non-fatigued long COVID patients and age- and sex-matched healthy controls (HCs). Methods:Long COVID symptoms were assessed using patient-reported outcome measures, including the fatigue assessment scale (FAS, scores ≥22 denote fatigue), and followed up to one year after hospital discharge. We assessed inflammation-related genes in circulating monocytes, serum levels of inflammation-regulating cytokines, and leukocyte and lymphocyte subsets, including major monocyte subsets and senescent T-lymphocytes, at 3-6 months post-discharge. Results: We included 37 fatigued and 36 non-fatigued long COVID patients and 42 HCs. Fatigued long COVID patients represented a more severe clinical profile than non-fatigued patients, with many concurrent symptoms (median 9 [IQR 5.0-10.0] vs 3 [1.0-5.0] symptoms, p&lt;0.001), and signs of cognitive failure (41%) and depression (&gt;24%). Immune abnormalities that were found in the entire group of long COVID patients were low grade inflammation (increased inflammatory gene expression in monocytes, increased serum pro-inflammatory cytokines) and signs of T-lymphocyte senescence (increased exhausted CD8+ TEMRA-lymphocytes). Immune profiles did not significantly differ between fatigued and non-fatigued long COVID groups. However, the severity of fatigue (total FAS score) significantly correlated with increases of intermediate and non-classical monocytes, upregulated gene levels of CCL2, CCL7, and SERPINB2 in monocytes, increases in serum Galectin-9, and higher CD8+ T-lymphocyte counts. Conclusion: Long COVID with fatigue is associated with many concurrent and persistent symptoms lasting up to one year after hospitalization. Increased fatigue severity associated with stronger signs of monocyte activation in long COVID patients and potentially point in the direction of monocyte-endothelial interaction. These abnormalities were present against a background of immune abnormalities common to the entire group of long COVID patients.</p

    International Paediatric Mitochondrial Disease Scale

    Get PDF
    Objective: There is an urgent need for reliable and universally applicable outcome measures for children with mitochondrial diseases. In this study, we aimed to adapt the currently available Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) to the International Paediatric Mitochondrial Disease Scale (IPMDS) during a Delphi-based process with input from international collaborators, patients and caretakers, as well as a pilot reliability study in eight patients. Subsequently, we aimed to test the feasibility, construct validity and reliability of the IPMDS in a multicentre study. Methods: A clinically, biochemically and genetically heterogeneous group of 17 patients (age 1.6–16 years) from five different expert centres from four different continents were evaluated in this study. Results: The feasibility of the IPMDS was good, as indicated by a low number of missing items (4 %) and the positive evaluation of patients, parents and users. Principal component analysis of our small sample identified three factors, which explained 57.9 % of the variance. Good construct validity was found using hypothesis testing. The overall interrater reliability was good [median intraclass correlation coefficient for agreement between raters (ICCagreement) 0.85; range 0.23–0.99). Conclusion: In conclusion, we suggest using the IPMDS for assessing natural history in children with mitochondrial diseases. These data should be used to further explore construct validity of the IPMDS and to set age limits. In parallel, responsiveness and the minimal clinically important difference should be studied to facilitate sample size calculations in future clinical trials

    B-cell targeting with anti-CD38 daratumumab:implications for differentiation and memory responses

    Get PDF
    B cell–targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell–dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-?B in B cells and the transcription of NF-?B–targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell–mediated diseases other than the currently targeted malignancies

    International Paediatric Mitochondrial Disease Scale

    Get PDF
    OBJECTIVE : There is an urgent need for reliable and universally applicable outcome measures for children with mitochondrial diseases. In this study, we aimed to adapt the currently available Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) to the International Paediatric Mitochondrial Disease Scale (IPMDS) during a Delphi-based process with input from international collaborators, patients and caretakers, as well as a pilot reliability study in eight patients. Subsequently, we aimed to test the feasibility, construct validity and reliability of the IPMDS in a multicentre study. METHODS : A clinically, biochemically and genetically heterogeneous group of 17 patients (age 1.6–16 years) from five different expert centres from four different continents were evaluated in this study. RESULTS : The feasibility of the IPMDS was good, as indicated by a low number of missing items (4 %) and the positive evaluation of patients, parents and users. Principal component analysis of our small sample identified three factors, which explained 57.9 % of the variance. Good construct validity was found using hypothesis testing. The overall interrater reliability was good [median intraclass correlation coefficient for agreement between raters (ICCagreement) 0.85; range 0.23–0.99). CONCLUSION : In conclusion, we suggest using the IPMDS for assessing natural history in children with mitochondrial diseases. These data should be used to further explore construct validity of the IPMDS and to set age limits. In parallel, responsiveness and the minimal clinically important difference should be studied to facilitate sample size calculations in future clinical trials.The work of SK and JS was sponsored by ZonMW (The Netherlands Organization for Health Research and Development).http://link.springer.com/journal/10545am2017Paediatrics and Child Healt
    corecore